FAQs – Swan River Alexandrium algal bloom and Paralytic Shellfish Poisoning

Background

Since 2019, two large Alexandrium algal blooms have occurred in the Swan and Canning rivers. The first occurred only in the Swan River between Pelican Point and Herne Hill, from February to May 2019 and was caused by Alexandrium minutum. Over the course of the bloom, the Department of Health advised the public not to fish for or consume fish, crabs or shellfish from the affected Swan River areas. Public health warning signs were erected by local government authorities at key Swan and Canning river jetties, boat ramps and popular fishing locations.

The second bloom began in December 2019 and persisted for 18 weeks through to late April 2020 affecting both the Swan and Canning rivers. Both A. minutum and A. pacificum were recorded during this event and paralytic shellfish toxin (PST) levels in mussels and crabs respectively reached 11 and 2.1 times the safe ANZFSC human consumption guidelines. During the peak of this bloom, there was a significant yellow plume evident between the Old Swan Brewery and Matilda Bay.

During this second bloom the Department of Health warnings lasted 23 weeks before being lifted on 29 May 2020. The warnings remained in place longer than the bloom event as it takes some weeks after the bloom collapses for toxins to disappear from the system. Since then Alexandrium has not been recorded at routine water quality monitoring sites in the Swan and Canning rivers.

This fact sheet provides information relevant to Alexandrium blooms in the Swan and Canning rivers, as well as other general health, fishing and other issues relating to Alexandrium and Paralytic Shellfish Poisoning (PSP).

What is the current bloom advice?

Alexandrium has not been detected in the Swan and Canning rivers since June 2020 but is expected to become an annual occurrence in the Swan and Canning rivers during our summer season (December -April).

At this stage recreational fishing will remain open for blue swimmer crabs (December 1-September 1) and year round for fish throughout the Swan and Canning rivers. To reduce your risk of PSP
please remove heads, guts (mustard) and gills from crabs caught in the Swan and Canning rivers prior to freezing, cooking or eating.

DoH advises not to eat shellfish including mussels, oysters, clams, pipis, scallops, cockles and razor clams from the Swan and Canning rivers, at any time. Urban waterways can contain heavy metal, microbial and other contaminants that may affect the quality of these types of seafood. Commercially bought seafood is tested via quality assurance processes to allow consumer confidence that it is safe to eat.

Swimming, water-skiing and boating is OK, but as a general rule swimming should be avoided in areas of discoloured water. It is also safe for dogs to swim in the water. The public is advised to pay attention to algal bloom caution and public health warning signs displayed in the Swan Canning Riverpark and to watch out for *Alexandrium* updates in the media.

Where are health warning signs displayed?

Harmful algae "caution signs" have been installed at popular Swan and Canning river fishing spots, jetties and boat ramps to alert the public of the risk algae can pose. Even if a sign is not erected at the place you recreate or fish, you are still advised to thoroughly clean crabs caught or collected and to not eat mussels.

CAUTION

THIS WATER MAY CONTAIN HARMFUL ALGAE
DO NOT EAT MUSSELS OR CRAB GUTS

If you collect crabs from the Swan and Canning rivers remove head, guts (mustard) and gills. Wash before freezing, cooking or eating.

FOR FURTHER INFORMATION:
www.fish.wa.gov.au/alerts
How do I clean blue swimmer crabs properly?

Remove all blue swimmer crab head, gills, guts or crab mustard prior to freezing, cooking or eating blue swimmer crabs. See photo sequence and video below:

<table>
<thead>
<tr>
<th>1. Anaesthetise the crab by putting on ice for five minutes before the cleaning process.</th>
<th>2. Turn the crab over, pry up the belly plate and remove.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Put your thumb between the top shell and bottom shell and peel off carapace. Keep the guts in the shell and discard them.</td>
<td>4. Turn the crab over, put your thumbs in the middle, press down and break into two halves.</td>
</tr>
<tr>
<td>5. Pull off the mouth parts.</td>
<td>6. Remove the gill filaments from both sides of the crab</td>
</tr>
</tbody>
</table>
7. Clean out all guts (mustard) remnants with running water.

8. Cleaned blue swimmer crab ready to cook or store.

What is Paralytic Shellfish Poisoning (PSP)?

Paralytic shellfish poisoning (PSP) is a disease caused by eating shellfish containing paralytic shellfish toxins (PSTs). PSTs are produced by some types of naturally occurring algae such as *Alexandrium minutum*, which are accumulated by filter-feeding shellfish. Crabs and certain fish also feed on shellfish, which may lead to bioaccumulation of PSTs in their organs and muscle tissue and could be dangerous if consumed.

What are the symptoms of PSP?

Symptoms of PSP are known to begin within minutes or up to 24 hours after eating shellfish. Initial symptoms include tingling and numbness around the mouth which can spread to the face, neck, arms and legs.

Other symptoms include:

- nausea and vomiting
- headache
- weakness
- blurred vision or temporary blindness
- prickly sensation at the finger tips
- change in temperature sensation
- loss of balance
- difficulty speaking or swallowing
- in severe cases difficulty breathing, paralysis and death can occur.

What are the potential health risks caused by the toxins produced by *Alexandrium*?

Alexandrium is a genus of microalgae containing a number of species that produce toxins known as Paralytic Shellfish Toxins (PSTs), that can be concentrated by filter feeding shellfish. Consumption of shellfish containing high levels of these toxins can result in PSP. In the worst-case scenario, this can cause muscular paralysis and death due to respiratory failure. Paralytic shellfish toxins have...
been detected at levels in the Swan and Canning rivers where consumption of only two mussels could lead to paralytic shellfish poisoning symptoms in adults.

Crabs may bioaccumulate these PSTs in the viscera (guts). PSTs may also bioaccumulate in the muscle tissue of both crabs and some fish. Testing for PSTs was undertaken in 2019 and 2020 to assess accumulation in selected biota known to be targeted by recreational fishers in the Swan and Canning rivers (mussels, crabs and black bream). Within the area known to be affected by the bloom, the algal toxin was detected in mussels and crab guts, but not crab flesh.

To date the toxin has not been found in edible flesh/ fillet of five types of fish tested in the Swan Canning Riverpark. Cooking, pressure cooking and/or freezing seafood does not destroy these PSTs. Cooking seafood can potentially spread the toxin from crab guts into the broth. Freezing whole crabs (viscera still in place) can result in the toxins spreading to flesh during the thawing process.

What should I do if I feel sick, or experience PSP type symptoms?
Seek urgent medical attention, particularly if you have any difficulty breathing.

Is there an antidote for PSP?
No. There is no specific antidote for PSP. Seek immediate medical attention if you or someone you know experiences PSP symptoms.

In severe cases people are monitored in hospital and may need breathing support.

How long do PSP symptoms remain?
Evidence suggests that after 12 - 24 hours, regardless of severity, victims start to recover gradually and are without any residual symptoms within a few days but in severe cases weakness may persist for up to a week.

Is it safe for me to swim in and recreate on the Swan River?
Yes. Swimming, water-skiing and boating is OK, but as a general rule swimming should be avoided in areas of discoloured water. It is also safe for dogs to swim in the water. There may be some areas associated with this bloom, where a yellow to rusty discoloration of the water may be observed.

Can the *Alexandrium* algae cause skin irritations?
Not that we know of, but it is recommended to avoid swimming in discoloured water in the affected area or where surface scums are evident.

How do shellfish become contaminated?
Shellfish feed by filtering small food particles; including microscopic algae, out of the water. When shellfish filter microalgae (e.g. *Alexandrium*) that produce PSTs, they accumulate these toxins in their tissues. Shellfish are resistant to the PSTs, but can transfer them on to other animals and humans that consume the shellfish.

What is the maximum safe level of PSP in bivalve molluscs (shellfish)?
The Australian and New Zealand Food Standards Code (2017) define the maximum level of paralytic shellfish poisons (Saxitoxin equivalent) in bivalve molluscs equal to 0.8 mg/kg. In a strict sense, this
level is only applicable to shellfish that are harvested for sale but may provide a comparative measure where other seafood is tested.

Does adherence to or comparison with ANZFSC maximum PSP levels from recent testing in shellfish, crabs and fish guarantee their safety?

Whilst adherence to, or comparison with ANZFSC maximum PSP levels from recent testing, may provide a general indication that crabs, fish and shellfish taken recreationally are most likely fit for human consumption; any results received should be treated with caution and are indicative only.

Unfortunately, due to the cost of testing, time delays and the limited number of tests reasonably able to be performed (in combination with changing environmental conditions, including bloom movement and its persistence over-time) this testing cannot fully guarantee the safety of every individual crab or fish caught for human consumption.

How long after a bloom do PSP toxins remain in shellfish, crabs and fish?

Even after a bloom ends, PSTs in crabs and some types of shellfish can remain for some time. PSTs in mussels may reduce quickly i.e. within days to a couple of weeks, whilst crabs and some fish and other shellfish species may take significantly longer depending on environmental conditions.

What factors contribute to *Alexandrium* blooms?

Waterways contain many different species of algae that will opportunistically take advantage of ambient conditions to proliferate and out-compete co-occurring species. Factors influencing blooms include temperature, turbulence, salinity, available nutrients and water clarity.

Experience from the two recent *Alexandrium* bloom events in the Swan Canning, indicates that *Alexandrium* growth is favoured by increased water temperatures, salinity and water clarity in late spring, early summer.

Should I consume shellfish that are collected recreationally?

Regardless of the presence/absence of *Alexandrium*, and/or PST’s, as a general rule people should avoid eating wild shellfish collected recreationally as their safety cannot be guaranteed. This is particularly the case in rivers, estuaries or other waterways where there is an increased likelihood of contaminant or nutrient inputs, which may result in elevated levels of algal toxins, bacteria, viruses, heavy metals and/or other contaminants within shellfish.

It is especially unsafe to eat wild shellfish from:
- marinas or other areas potentially subject to boat discharges
- areas near outfalls from sewage, septic tanks, stormwater or industrial sites
- areas affected by recent heavy rainfall
- areas affected by toxic algal blooms.

What shellfish are safe for human consumption?

DoH recommends only eating shellfish that has been harvested commercially under strict monitoring programs, that ensure waters are free from pollutants and toxins. These safety programs include routine testing of the animal as well as the waters to make sure the shellfish are safe to eat. Farmed shellfish purchased in supermarkets and other commercial outlets in WA are subject to a strict quality-assurance program to ensure they are safe for human consumption.
What factors lead to a decline of an algal bloom?

Algal blooms generally cease when:

- available nutrients in the water are depleted, and/or
- environmental conditions, such as light and temperature become unfavourable, or
- a virus or predation by zooplankton reduces the algal population faster than it can grow.

A heavy rainfall event may also assist to disrupt some algal blooms, but can provide a catalyst for other algal blooms as conditions change to favour another species.

How long will the blooms last?

It is not known when or how long the next *Alexandrium* bloom may last, but DBCA will continue to monitor algae levels within the Swan and Canning rivers and provide advice to DoH.

The public is advised to pay attention to algal bloom caution and public health warning signs displayed in the Swan Canning Riverpark and to watch out for *Alexandrium* updates in the media.

DoH will provide a public health warning (as appropriate), and will later advise when river conditions are satisfactory from a public health perspective.

Is this the first time an *Alexandrium* bloom has been recorded in the Swan and Canning rivers?

Alexandrium has been recorded in the Swan River since 2001, but we have only recently seen blooms of *Alexandrium* at this density or extent in the river system. Favourable temperatures, salinities, and available nutrients, as well as, relatively calm weather conditions, contribute to the proliferation and continuation of these blooms.

Monitoring information web-link

DBCA is the Western Australian state government agency which undertakes management, and weekly phytoplankton (microalgae) and physico-chemical water quality monitoring throughout the Swan and Canning rivers.

How can we stop the spread of the bloom?

Although research is being undertaken into different control methods once a bloom is detected it is very difficult to control.

What is the likely impact of the *Alexandrium* bloom on the rivers’ ecosystem and wildlife?

Alexandrium produces potent neurotoxins which are toxic to some zooplankton and small fish. These impacts can influence the ecosystem dynamics. *Alexandrium* also has the potential to impact wildlife as toxins can accumulate up the food chain. Filter feeders such as mussels filter water and can remove the algae from the water column. The algae contain toxins which can accumulate in the mussels and the mussels can then be consumed by other organisms including...
crabs and fish. To date no negative effects on wildlife has been observed in association with this algal bloom.

What does the algal bloom look like?

The visual impact of the algae is a yellow to rusty discoloration of the water. DoH generally advises people not to swim in areas of discoloured water or after heavy rainfall events.

What actions are being taken to reduce the bloom and the human health risks?

Since 2019, an interagency Incident Management Team (IMT) chaired by DBCA and including DoH and the Department of Primary Industries and Regional Development (DPIRD) has overseen the response to the blooms including communications.

DBCA monitor the Swan Canning Estuary water quality weekly, to inform river management actions regarding algal blooms.

DBCA with the assistance of the Department of Primary Industries and Regional Development (DPIRD) have collected mussels, blue swimmer crabs and black bream in the Swan River. These species were tested for toxins to increase our understanding of the potential impacts of *Alexandrium* upon these species.

This testing is indicative only and is not designed to confirm that crabs, fish and mussels are safe for human consumption, as there other factors in large urban catchments (e.g. local sources of pollution, stormwater runoff etc.) that can influence whether it is safe to consume seafood from the river. As results become available, DoH will provide further advice regarding the continued safety to consume seafood caught in the Swan and Canning rivers.

In the past DBCA has investigated different approaches to control algal blooms. Each type of algae is unique, and DBCA, DoH and DPIRD are funding research to investigate approaches to mitigate and control *Alexandrium*.

What other river management initiatives help prevent *Alexandrium* and other algae from spreading?

Algae are a natural part of the river system, and algal blooms are quite common in nutrient rich river systems. Controlling nutrients that enter the river system helps to reduce the likelihood of nuisance and toxic algal blooms.

DBCA and its’ partners use constructed wetlands, foreshore plantings, and different landcare initiatives in the catchment, to help reduce nutrients such as nitrogen, and phosphorus entering our rivers. Fewer nutrients in the water, means, less nutrients for algae and fewer blooms.

Additionally, DBCA also run free behaviour change programs such as: ‘RiverWise gardening’ workshops, to assist residents and land managers to use fertiliser more responsibly.

DBCA also provide artificial oxygenation to around 14 kilometres of the upper Swan and Canning Rivers through four oxygenation plants. This oxygenation zone provides a refuge area for aquatic wildlife at times of the year when there is low oxygen in these parts of the river which also helps to reduce nutrient release from the sediment and with processing of nutrients that enter the river system.
DBCA and DPIRD work together to remove any dead fish from the river when fish kills occur, as they can produce and contribute harmful bacteria into our rivers.

What can Perth residents do to help slow down the algae's spread and prevent future outbreaks?

Reduce your fertiliser use and only fertilise at the right time of year. Having a waterwise garden, that doesn’t use a lot of fertiliser, or water, helps to reduce nutrient losses to the environment and saves people money. DBCA supports the ‘RiverWise gardening' workshops that are held by Josh Byrne.

These workshops provide a great forum for people to; better understand how they can make positive changes to their practices that can help their gardens and the Rivers. Refer to the River Guardians website for more information: https://www.riverguardians.com/.

People can also pick up after their dogs, rake up lawn clippings/ leaves and put them in the bin to reduce the nutrient load being washed into our drains which ultimately flow into our rivers.

Not all parts of the Swan and Canning rivers or other waterways are always monitored for algal blooms and anyone who sees or suspects an algal bloom in a waterway should report this to the DWER ALGALWATCH during office hours on 6250 8064 or to the relevant local government authority for assessment.

For further information on *Alexandrium*, please contact DoH on 9222 2000 or refer to the web pages provided on the DBCA, DPIRD and DoH websites.
